Program and Agenda

Abstract

PROJECTIONS OF EXTREME SEA LEVEL VARIABILITY DUE TO EL NIÑO TAIMASA

During strong El Niño events, sea level drops around some tropical western Pacific islands by up to 20–30 cm. Such extreme events (referred to as ‘taimasa’ in Samoa) expose shallow reefs, thereby damaging associated coastal ecosystems and contributing to the formation of ‘flat topped coral heads’ often referred to as microatolls. We show that during the termination of strong El Niño events, a southward movement of weak trade winds prolongs extreme low sea levels in the southwestern Pacific. Whereas future sea levels are likely to gradually rise, recent modeling evidence suggests that the frequency of strong El Niño events (which alter local trade winds and sea level) is very likely to increase with greenhouse warming. Such changes could exacerbate El Niño-related sea level drops, especially in the tropical southwestern Pacific. Using present-generation coupled climate models forced with increasing greenhouse-gas concentrations, we assess how the interplay between global mean sea level rise, on one hand, and more frequent interannual sea level drops, on the other, will affect shallow reef ecosystems.

Authors

Widlansky, M. J., University of Hawai‘i at Manoa, USA, mwidlans@hawaii.edu

Timmermann, A., University of Hawai‘i at Manoa, USA, axel@hawaii.edu

McGregor, S., University of New South Wales, Australia, shayne.mcgregor@unsw.edu.au

Stuecker, M. F., University of Hawai‘i at Manoa, USA, stuecker@hawaii.edu

Chikamoto, Y., University of Hawai‘i at Manoa, USA, chika44@hawaii.edu

Details

Oral presentation

Session #:079
Date: 2/26/2014
Time: 12:00
Location: 313 B

Presentation is given by student: No